548 research outputs found

    The CMSSM Survives Planck, the LHC, LUX-ZEPLIN, Fermi-LAT, H.E.S.S. and IceCube

    Full text link
    We revisit the viability of the CMSSM, searching for regions of parameter space that yield a neutralino dark matter density compatible with Planck measurements, as well as LHC constraints including sparticle searches and the mass of the Higgs boson, recent direct limits on spin-independent and -dependent dark matter scattering from the LUX-ZEPLIN (LZ) experiment, the indirect constraints from Fermi-LAT and H.E.S.S. on dark matter annihilations to photons in dwarf spheroidal galaxies and the Galactic Centre, and the IceCube limits on muons from annihilations to neutrinos in the Sun. For representative values of tanβ\tan \beta and A0A_0 we map in detail the Planck-compatible strips in CMSSM parameter planes, which exhibit multiple distinctive features for large tanβ\tan \beta, A0=0A_0 = 0 and μ>0\mu > 0, and identify portions of the strips that survive all the phenomenological constraints. We find that the most powerful constraint is that from mhm_h, followed by the LZ limit on spin-independent scattering, whereas sparticle searches at the LHC and indirect dark matter searches are less restrictive. Most of the surviving CMSSM parameter space features a Higgsino-like dark matter particle with a mass 10001100\sim 1000-1100 GeV, which could best be probed with future direct searches for dark matter scattering.Comment: 44 pages, 20 figures, journal version to appear in EPJ-

    Multimodal Speaker Diarization Utilizing Face Clustering Information

    Get PDF

    A deep-learning approach for multi-temporal savannah woody vegetation density assessment with Earth Observation data

    Get PDF
    Bush encroachment in African savannahs has been identified as a land degradation process, mainly due to the detrimental effect it has on small pastoralist communities. Mapping and monitoring the extent covered by the woody component in savannahs has therefore become the focus of recent remote sensing-based studies. This is mainly due to the large spatial scale that the process of woody vegetation encroachment is related with and the fact that appropriate remote sensing data are now available free of charge. However, due to the nature of savannahs and the mixture of land cover types that commonly make up the signal of a single pixel, simply mapping the presence/absence of woody vegetation is somewhat limiting: it is more important to know whether an area is undergoing an increase in woody cover, ever if it is not the dominant cover type. More recent efforts have, therefore, focused in mapping the fraction of woody vegetation, which, clearly, is much more challenging. This paper proposes a methodological framework for mapping savannah woody vegetation and monitoring its evolution though time, based on very high-resolution data and multi-temporal medium-scale satellite imagery. We tested our approach in a South African savannah region, the Northwest Province (>100,000 km2), 0.5m-pixel aerial photographs for sampling and validation and Landsat data. We first mapped presence/absence of woody vegetation using samples selected over 5x5 km aerial photo subsets acquired between 2009 and 2013 and a Random Forest classifier. We then used these estimates to train a U-Net Convolutional Neural Network to produce fractional woody cover estimates from a series of spatio-temporal variability metrics derived from all available Landsat data in the five years between 2009 and 2013. The model was then applied to other epochs of Landsat metrics, centred around 2016, 2006, 2001, 1998, 1993, and 1988. The multi-temporal fractional woody cover maps were also used to derive estimates of fractional woody cover change over the three decades of the study period. We identified areas that had undergone a constant increase in woody cover density through the 6 epochs, and others that saw a net increase in woody cover density from 1988 to 2018. These hotspots of woody cover densification, or encroachment, that our methodology was able to identify, should be the ones that mitigation measures are directed to, in order to prioritise action and limit the extent and damage caused by this form of savannah land degradation

    Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach

    Full text link
    [EN] We propose the novel integrated modelling procedure 3H-EMC for the determination of the environmental flow in rivers and streams; 3H-EMC combines Hydrological, Hydrodynamic and Habitat modelling with the use of the Environmental Management Classes (EMCs) that are defined by the Global Environmental Flow Calculator. We apply 3H-EMC in the Sperchios River in Central Greece, in which water abstractions for irrigation cause significant environmental impacts. Calculations of the hydrodynamic-habitat model, in which the large and the small chub are the main fish species, suggest discharge values that range from 1.0 m3/s to 4.0 m3/s. However, hydrological modelling indicates that it is practically difficult to achieve discharges that are higher than approximately 1.0-1.5 m3/s. Furthermore, legislation suggests significantly lower values (0.4-0.5 m3/s) that are unacceptable from the ecological point of view. This behaviour shows that a non-integrated approach, which is based only on hydrodynamic-habitat modelling does not necessarily result in realistic environmental flows, and thus an integrated approach is required. We propose the value of 1.0 m3/s as the "optimum" environmental flow for Sperchios River, because (a) it satisfies the habitat requirements, as expressed by the values of weighted useable area that are equal to 2180 and 1964 m2 for the large and small chub, respectively, and correspond to 82 and 95% of their respective maximum values, (b) it is consistent with the requirements of Environmental Classes A and B, whose percentiles are higher than 75% for discharge (77.2%) and for habitat availability (>83.5% for the large chub and >85.0% for the small chub), (c) it is practically achievable from the hydrological point of view, and (d) it is higher than the value proposed by the Greek legislation. The proposed modelling approach can be applied to any river or stream using the same or similar modelling tools, which should be linked via suitable coupling algorithms.Hydraulic field measurements were performed within the framework of a research project by the Hellenic Centre of Marine Research (HCMR) entitled KRIPIS “Development of an integrated management system for river basin, coastal and marine zones” (http://imbriw.hcmr.gr/en/). Fish habitat data were collected within the framework of the ECOFLOW research project (www. ecoflow.gr). A part of the modelling work has been performed, while the first author was a visiting professor at the Technical University of Munich (TUM); thanks are due to the Bavarian State Ministry of Education and Cultural Affairs and the German Academic Exchange Service (DAAD).Stamou, A.; Polydera, A.; Papadonikolaki, G.; Martinez-Capel, F.; Muñoz Mas, R.; Papadaki, C.; Zogaris, S.... (2018). Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. Journal of Environmental Management. 209:273-285. https://doi.org/10.1016/j.jenvman.2017.12.038S27328520

    On temperature- and space-dimension dependent matter agglomeration in a mature growing stage

    Full text link
    Model matter agglomerations, with temperature as leading control parameter, have been considered, and some of their characteristics have been studied. The primary interest has been focused on the grain volume fluctuations, the magnitude of which readily differentiates between two commonly encountered types of matter agglomeration/aggregation processes, observed roughly for high- and low-density matter organizations. The two distinguished types of matter arrangements have been described through the (entropic) potential driving system. The impact of the potential type on the character of matter agglomeration has been studied, preferentially for (low density) matter agglomeration for which a logarithmic measure of its speed has been proposed. A common diffusion as well as mechanical relaxation picture, emerging during the mature growing stage, has been drawn using a phenomenological line of argumentation. Applications, mostly towards obtaining soft agglomerates of so-called jammed materials, have been mentioned

    Interactions between proteins bound to biomembranes

    Full text link
    We study a physical model for the interaction between general inclusions bound to fluid membranes that possess finite tension, as well as the usual bending rigidity. We are motivated by an interest in proteins bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly symmetric inclusions. This repulsion extends over length scales of order tens of nanometers, and contrasts with the membrane-mediated contact attraction for similar inclusions on tensionless membranes. For non circularly symmetric inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell membranes and the striations that are observed on their coats.Comment: 22 pages, 2 figure

    Free energy of colloidal particles at the surface of sessile drops

    Full text link
    The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals π/2\pi/2 a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.Comment: 24 pages, 19 figure

    CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature.

    Get PDF
    The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of "open" clathrin-coated pits (CCPs) to "necked"/"closed" CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake.S.E.M. and D.J.O. are funded by a Wellcome Trust Fellowship (to D.J.O. no. 090909/Z). N.A.B. is funded by MRC grant MR/M010007/1, and S.H. is funded by a grant from the German Science Foundation (SFB 635, TP A3). D.S. and S.M. acknowledge financial support from the Lundbeck Foundation and the Danish Councils for Independent and Strategic Research. C.J.M. and F.P. were funded by the Fondation pour la Recherche Medicale.This is the final published version. It first appeared at http://www.cell.com/developmental-cell/fulltext/S1534-5807%2815%2900144-6

    Next-generation sequencing refines the genetic architecture of Greek GnRH-deficient patients

    Get PDF
    Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a rare disease with a wide spectrum of reproductive and non-reproductive clinical characteristics. Apart from the phenotypic heterogeneity, IGD is also highly genetically heterogeneous with >35 genes implicated in the disease. Despite this genetic heterogeneity, genetic enrichment in specific subpopulations has been described. We have previously described low prevalence of genetic variation in the Greek IGD cohort discovered with utilization of Sanger sequencing in 14 known IGD genes. Here, we describe the expansion of genetic screening in the largest IGD Greek cohort that has ever been studied with the usage of whole-exome sequencing, searching for rare sequencing variants (RSVs) in 37 known IGD genes. Even though Sanger sequencing detected genetic variation in 21/81 IGD patients in 7/14 IGD genes without any evidence of oligogenicity, whole exome sequencing (WES) revealed that 27/87 IGD patients carried a rare genetic change in a total of 15 genes with 4 IGD cases being oligogenic. Our findings suggest that next-generation sequencing (NGS) techniques can discover previously undetected variation, making them the standardized method for screening patients with rare and/or more common disorders
    corecore